mirror of
https://github.com/Dadido3/noita-mapcap.git
synced 2024-11-18 17:17:31 +00:00
357 lines
9.9 KiB
Go
357 lines
9.9 KiB
Go
// Copyright (c) 2019 David Vogel
|
|
//
|
|
// This software is released under the MIT License.
|
|
// https://opensource.org/licenses/MIT
|
|
|
|
package main
|
|
|
|
import (
|
|
"fmt"
|
|
"image"
|
|
"image/color"
|
|
"log"
|
|
"math"
|
|
"math/rand"
|
|
"path/filepath"
|
|
"regexp"
|
|
"runtime"
|
|
"sort"
|
|
"strconv"
|
|
"sync"
|
|
|
|
"github.com/schollz/progressbar/v2"
|
|
)
|
|
|
|
const tileAlignmentSearchRadius = 5
|
|
|
|
type tileAlignment struct {
|
|
offset image.Point // Contains the offset of the tile a, so that it aligns pixel perfect with tile b
|
|
}
|
|
|
|
type tileAlignmentKeys struct {
|
|
a, b *imageTile
|
|
}
|
|
|
|
// tilePairs contains image pairs and their alignment.
|
|
type tilePairs map[tileAlignmentKeys]tileAlignment
|
|
|
|
var regexFileParse = regexp.MustCompile(`^(-?\d+),(-?\d+).png$`)
|
|
|
|
func loadImages(path string, scaleDivider int) ([]imageTile, error) {
|
|
var imageTiles []imageTile
|
|
|
|
if scaleDivider < 1 {
|
|
return nil, fmt.Errorf("Invalid scale of %v", scaleDivider)
|
|
}
|
|
|
|
files, err := filepath.Glob(filepath.Join(path, "*.png"))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
for _, file := range files {
|
|
baseName := filepath.Base(file)
|
|
result := regexFileParse.FindStringSubmatch(baseName)
|
|
var x, y int
|
|
if parsed, err := strconv.ParseInt(result[1], 10, 0); err == nil {
|
|
x = int(parsed)
|
|
} else {
|
|
return nil, fmt.Errorf("Error parsing %v to integer: %w", result[1], err)
|
|
}
|
|
if parsed, err := strconv.ParseInt(result[2], 10, 0); err == nil {
|
|
y = int(parsed)
|
|
} else {
|
|
return nil, fmt.Errorf("Error parsing %v to integer: %w", result[2], err)
|
|
}
|
|
|
|
width, height, err := getImageFileDimension(file)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
imageTiles = append(imageTiles, imageTile{
|
|
fileName: file,
|
|
scaleDivider: scaleDivider,
|
|
image: image.Rect(x/scaleDivider, y/scaleDivider, (x+width)/scaleDivider, (y+height)/scaleDivider),
|
|
imageMutex: &sync.RWMutex{},
|
|
})
|
|
}
|
|
|
|
return imageTiles, nil
|
|
}
|
|
|
|
// AlignTilePair returns the pixel delta for the first tile, so that it aligns perfectly with the second.
|
|
// This function will load images if needed.
|
|
func AlignTilePair(tileA, tileB *imageTile, searchRadius int) (image.Point, error) {
|
|
imgA, err := tileA.GetImage()
|
|
if err != nil {
|
|
return image.Point{}, err
|
|
}
|
|
imgB, err := tileB.GetImage()
|
|
if err != nil {
|
|
return image.Point{}, err
|
|
}
|
|
|
|
bestPoint := image.Point{}
|
|
bestValue := math.Inf(1)
|
|
|
|
for y := -searchRadius; y <= searchRadius; y++ {
|
|
for x := -searchRadius; x <= searchRadius; x++ {
|
|
point := image.Point{x, y} // Offset of the first image.
|
|
|
|
value := getImageDifferenceValue(imgA, imgB, point)
|
|
if bestValue > value {
|
|
bestValue, bestPoint = value, point
|
|
}
|
|
}
|
|
}
|
|
|
|
return bestPoint, nil
|
|
}
|
|
|
|
func (tp tilePairs) AlignTiles(tiles []*imageTile) error {
|
|
|
|
n := len(tiles)
|
|
maxOperations, operations := (n-1)*(n)/2, 0
|
|
|
|
// Compare all n tiles with each other. (`(n-1)*(n)/2` comparisons)
|
|
for i, tileA := range tiles {
|
|
for j := i + 1; j < len(tiles); j++ {
|
|
tileB := tiles[j]
|
|
|
|
_, ok := tp[tileAlignmentKeys{tileA, tileB}]
|
|
if !ok {
|
|
// Entry doesn't exist yet. Determine tile pair alignment.
|
|
offset, err := AlignTilePair(tileA, tileB, tileAlignmentSearchRadius)
|
|
if err != nil {
|
|
return fmt.Errorf("Failed to align tile pair %v %v: %w", tileA, tileB, err)
|
|
}
|
|
|
|
operations++
|
|
log.Printf("(%v/%v)Got alignment for pair %v %v. Offset = %v", operations, maxOperations, tileA, tileB, offset)
|
|
|
|
// Store tile alignment pair, also reversed.
|
|
tp[tileAlignmentKeys{tileA, tileB}] = tileAlignment{offset: offset}
|
|
tp[tileAlignmentKeys{tileB, tileA}] = tileAlignment{offset: offset.Mul(-1)}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
// Silly and hacky method to determine the minimal error.
|
|
// TODO: Use some mixed integer method or something similar to optimize the tile alignment
|
|
|
|
// The error function returns the x and y error. The axes are optimized independent of each other later on.
|
|
errorFunction := func(tiles []*imageTile) (image.Point, error) {
|
|
errorValue := image.Point{}
|
|
|
|
for i, tileA := range tiles {
|
|
for j := i + 1; j < len(tiles); j++ {
|
|
tileB := tiles[j]
|
|
|
|
tileAlignment, ok := tp[tileAlignmentKeys{tileA, tileB}]
|
|
if !ok {
|
|
return image.Point{}, fmt.Errorf("Offset of the tile pair %v %v is missing", tileA, tileB)
|
|
}
|
|
|
|
// The error is the difference between the needed offset, and the actual offsets
|
|
tempErrorValue := pointAbs(tileAlignment.offset.Sub(tileA.offset).Add(tileB.offset))
|
|
|
|
errorValue = errorValue.Add(tempErrorValue)
|
|
}
|
|
}
|
|
return errorValue, nil
|
|
}
|
|
|
|
errorValue, err := errorFunction(tiles)
|
|
if err != nil {
|
|
return fmt.Errorf("Failed to calculate error value: %w", err)
|
|
}
|
|
// Randomly select tiles, and move them in the direction where the error value is lower.
|
|
// The "gradient" is basically caluclated by try and error.
|
|
for i := 0; i < len(tiles)*tileAlignmentSearchRadius*5; i++ {
|
|
tile := tiles[rand.Intn(len(tiles))]
|
|
|
|
// Calculate error value for positive shifting.
|
|
tile.offset = tile.offset.Add(image.Point{1, 1})
|
|
plusErrorValue, err := errorFunction(tiles)
|
|
if err != nil {
|
|
return fmt.Errorf("Failed to calculate error value: %w", err)
|
|
}
|
|
|
|
// Calculate error value for negative shifting.
|
|
tile.offset = tile.offset.Add(image.Point{-2, -2})
|
|
minusErrorValue, err := errorFunction(tiles)
|
|
if err != nil {
|
|
return fmt.Errorf("Failed to calculate error value: %w", err)
|
|
}
|
|
|
|
// Reset tile movement.
|
|
tile.offset = tile.offset.Add(image.Point{1, 1})
|
|
|
|
// Move this tile towards the smaller error value.
|
|
if plusErrorValue.X < errorValue.X {
|
|
tile.offset = tile.offset.Add(image.Point{1, 0})
|
|
}
|
|
if minusErrorValue.X < errorValue.X {
|
|
tile.offset = tile.offset.Add(image.Point{-1, 0})
|
|
}
|
|
if plusErrorValue.Y < errorValue.Y {
|
|
tile.offset = tile.offset.Add(image.Point{0, 1})
|
|
}
|
|
if minusErrorValue.Y < errorValue.Y {
|
|
tile.offset = tile.offset.Add(image.Point{0, -1})
|
|
}
|
|
}
|
|
|
|
// TODO: Move images in a way that the majority of images is positioned equal to their original position
|
|
|
|
return nil
|
|
}
|
|
|
|
func (tp tilePairs) Stitch(tiles []imageTile, destImage *image.RGBA) error {
|
|
intersectTiles := []*imageTile{}
|
|
images := []*image.RGBA{}
|
|
|
|
// Get only the tiles that intersect with the destination image bounds.
|
|
// Ignore alignment here, doesn't matter if an image overlaps a few pixels anyways.
|
|
for i, tile := range tiles {
|
|
if tile.OffsetBounds().Overlaps(destImage.Bounds()) {
|
|
tilePtr := &tiles[i]
|
|
intersectTiles = append(intersectTiles, tilePtr)
|
|
img, err := tilePtr.GetImage()
|
|
if err != nil {
|
|
return fmt.Errorf("Couldn't get image: %w", err)
|
|
}
|
|
imgCopy := *img
|
|
imgCopy.Rect = imgCopy.Rect.Add(tile.offset).Inset(4) // Reduce image bounds by 4 pixels on each side, because otherwise there will be artifacts.
|
|
images = append(images, &imgCopy)
|
|
}
|
|
}
|
|
|
|
//log.Printf("intersectTiles: %v", intersectTiles)
|
|
|
|
// Align those tiles
|
|
/*if err := tp.alignTiles(intersectTiles); err != nil {
|
|
return fmt.Errorf("Failed to align tiles: %w", err)
|
|
}*/
|
|
|
|
// TODO: Add working aligning algorithm
|
|
|
|
/*for _, intersectTile := range intersectTiles {
|
|
intersectTile.loadImage()
|
|
draw.Draw(destImage, destImage.Bounds(), intersectTile.image, destImage.Bounds().Min, draw.Over)
|
|
}*/
|
|
|
|
/*for _, intersectTile := range intersectTiles {
|
|
drawLabel(destImage, intersectTile.image.Bounds().Min.X, intersectTile.image.Bounds().Min.Y, fmt.Sprintf("%v", intersectTile.fileName))
|
|
}*/
|
|
|
|
drawMedianBlended(images, destImage)
|
|
|
|
return nil
|
|
}
|
|
|
|
// StitchGrid calls stitch, but divides the workload into a grid of chunks.
|
|
// Additionally it runs the workload multithreaded.
|
|
func (tp tilePairs) StitchGrid(tiles []imageTile, destImage *image.RGBA, gridSize int) (errResult error) {
|
|
//workloads := gridifyRectangle(destImage.Bounds(), gridSize)
|
|
workloads, err := hilbertifyRectangle(destImage.Bounds(), gridSize)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
bar := progressbar.New(len(workloads))
|
|
bar.RenderBlank()
|
|
|
|
// Start worker threads
|
|
wc := make(chan image.Rectangle)
|
|
wg := sync.WaitGroup{}
|
|
for i := 0; i < runtime.NumCPU()*2; i++ {
|
|
wg.Add(1)
|
|
go func() {
|
|
defer wg.Done()
|
|
for workload := range wc {
|
|
if err := tp.Stitch(tiles, destImage.SubImage(workload).(*image.RGBA)); err != nil {
|
|
errResult = err // This will not stop execution, but at least one of any errors is returned.
|
|
}
|
|
bar.Add(1)
|
|
}
|
|
}()
|
|
}
|
|
|
|
// Push workload to worker threads
|
|
for _, workload := range workloads {
|
|
wc <- workload
|
|
}
|
|
|
|
// Wait until all worker threads are done
|
|
close(wc)
|
|
wg.Wait()
|
|
|
|
// Newline because of the progress bar
|
|
fmt.Println("")
|
|
|
|
return
|
|
}
|
|
|
|
func drawMedianBlended(images []*image.RGBA, destImage *image.RGBA) {
|
|
bounds := destImage.Bounds()
|
|
|
|
// Create arrays to be reused every pixel
|
|
rListEmpty, gListEmpty, bListEmpty := make([]int, 0, len(images)), make([]int, 0, len(images)), make([]int, 0, len(images))
|
|
|
|
for iy := bounds.Min.Y; iy < bounds.Max.Y; iy++ {
|
|
for ix := bounds.Min.X; ix < bounds.Max.X; ix++ {
|
|
rList, gList, bList := rListEmpty, gListEmpty, bListEmpty
|
|
point := image.Point{ix, iy}
|
|
found := false
|
|
|
|
// Iterate through all images and create a list of colors.
|
|
for _, img := range images {
|
|
if point.In(img.Bounds()) {
|
|
col := img.RGBAAt(point.X, point.Y)
|
|
rList, gList, bList = append(rList, int(col.R)), append(gList, int(col.G)), append(bList, int(col.B))
|
|
found = true
|
|
}
|
|
}
|
|
|
|
// If there were no images to get data from, ignore the pixel.
|
|
if !found {
|
|
continue
|
|
}
|
|
|
|
// Sort colors.
|
|
sort.Ints(rList)
|
|
sort.Ints(gList)
|
|
sort.Ints(bList)
|
|
|
|
// Take the middle element of each color.
|
|
var r, g, b uint8
|
|
if len(rList)%2 == 0 {
|
|
// Even
|
|
r = uint8((rList[len(rList)/2-1] + rList[len(rList)/2]) / 2)
|
|
} else {
|
|
// Odd
|
|
r = uint8(rList[(len(rList)-1)/2])
|
|
}
|
|
if len(gList)%2 == 0 {
|
|
// Even
|
|
g = uint8((gList[len(gList)/2-1] + gList[len(gList)/2]) / 2)
|
|
} else {
|
|
// Odd
|
|
g = uint8(gList[(len(gList)-1)/2])
|
|
}
|
|
if len(bList)%2 == 0 {
|
|
// Even
|
|
b = uint8((bList[len(bList)/2-1] + bList[len(bList)/2]) / 2)
|
|
} else {
|
|
// Odd
|
|
b = uint8(bList[(len(bList)-1)/2])
|
|
}
|
|
|
|
destImage.SetRGBA(ix, iy, color.RGBA{r, g, b, 255})
|
|
}
|
|
}
|
|
}
|