Remove incomplete alignment algorithm

This commit is contained in:
David Vogel 2019-11-04 20:52:47 +01:00
parent e1fbda1053
commit dc42ee1eb5
2 changed files with 8 additions and 160 deletions

View File

@ -9,9 +9,6 @@ import (
"fmt"
"image"
"image/color"
"log"
"math"
"math/rand"
"path/filepath"
"regexp"
"runtime"
@ -22,19 +19,6 @@ import (
"github.com/schollz/progressbar/v2"
)
const tileAlignmentSearchRadius = 5
type tileAlignment struct {
offset image.Point // Contains the offset of the tile a, so that it aligns pixel perfect with tile b
}
type tileAlignmentKeys struct {
a, b *imageTile
}
// tilePairs contains image pairs and their alignment.
type tilePairs map[tileAlignmentKeys]tileAlignment
var regexFileParse = regexp.MustCompile(`^(-?\d+),(-?\d+).png$`)
func loadImages(path string, scaleDivider int) ([]imageTile, error) {
@ -80,136 +64,9 @@ func loadImages(path string, scaleDivider int) ([]imageTile, error) {
return imageTiles, nil
}
// AlignTilePair returns the pixel delta for the first tile, so that it aligns perfectly with the second.
// This function will load images if needed.
func AlignTilePair(tileA, tileB *imageTile, searchRadius int) (image.Point, error) {
imgA, err := tileA.GetImage()
if err != nil {
return image.Point{}, err
}
imgB, err := tileB.GetImage()
if err != nil {
return image.Point{}, err
}
bestPoint := image.Point{}
bestValue := math.Inf(1)
for y := -searchRadius; y <= searchRadius; y++ {
for x := -searchRadius; x <= searchRadius; x++ {
point := image.Point{x, y} // Offset of the first image.
value := getImageDifferenceValue(imgA, imgB, point)
if bestValue > value {
bestValue, bestPoint = value, point
}
}
}
return bestPoint, nil
}
func (tp tilePairs) AlignTiles(tiles []*imageTile) error {
n := len(tiles)
maxOperations, operations := (n-1)*(n)/2, 0
// Compare all n tiles with each other. (`(n-1)*(n)/2` comparisons)
for i, tileA := range tiles {
for j := i + 1; j < len(tiles); j++ {
tileB := tiles[j]
_, ok := tp[tileAlignmentKeys{tileA, tileB}]
if !ok {
// Entry doesn't exist yet. Determine tile pair alignment.
offset, err := AlignTilePair(tileA, tileB, tileAlignmentSearchRadius)
if err != nil {
return fmt.Errorf("Failed to align tile pair %v %v: %w", tileA, tileB, err)
}
operations++
log.Printf("(%v/%v)Got alignment for pair %v %v. Offset = %v", operations, maxOperations, tileA, tileB, offset)
// Store tile alignment pair, also reversed.
tp[tileAlignmentKeys{tileA, tileB}] = tileAlignment{offset: offset}
tp[tileAlignmentKeys{tileB, tileA}] = tileAlignment{offset: offset.Mul(-1)}
}
}
}
// Silly and hacky method to determine the minimal error.
// TODO: Use some mixed integer method or something similar to optimize the tile alignment
// The error function returns the x and y error. The axes are optimized independent of each other later on.
errorFunction := func(tiles []*imageTile) (image.Point, error) {
errorValue := image.Point{}
for i, tileA := range tiles {
for j := i + 1; j < len(tiles); j++ {
tileB := tiles[j]
tileAlignment, ok := tp[tileAlignmentKeys{tileA, tileB}]
if !ok {
return image.Point{}, fmt.Errorf("Offset of the tile pair %v %v is missing", tileA, tileB)
}
// The error is the difference between the needed offset, and the actual offsets
tempErrorValue := pointAbs(tileAlignment.offset.Sub(tileA.offset).Add(tileB.offset))
errorValue = errorValue.Add(tempErrorValue)
}
}
return errorValue, nil
}
errorValue, err := errorFunction(tiles)
if err != nil {
return fmt.Errorf("Failed to calculate error value: %w", err)
}
// Randomly select tiles, and move them in the direction where the error value is lower.
// The "gradient" is basically caluclated by try and error.
for i := 0; i < len(tiles)*tileAlignmentSearchRadius*5; i++ {
tile := tiles[rand.Intn(len(tiles))]
// Calculate error value for positive shifting.
tile.offset = tile.offset.Add(image.Point{1, 1})
plusErrorValue, err := errorFunction(tiles)
if err != nil {
return fmt.Errorf("Failed to calculate error value: %w", err)
}
// Calculate error value for negative shifting.
tile.offset = tile.offset.Add(image.Point{-2, -2})
minusErrorValue, err := errorFunction(tiles)
if err != nil {
return fmt.Errorf("Failed to calculate error value: %w", err)
}
// Reset tile movement.
tile.offset = tile.offset.Add(image.Point{1, 1})
// Move this tile towards the smaller error value.
if plusErrorValue.X < errorValue.X {
tile.offset = tile.offset.Add(image.Point{1, 0})
}
if minusErrorValue.X < errorValue.X {
tile.offset = tile.offset.Add(image.Point{-1, 0})
}
if plusErrorValue.Y < errorValue.Y {
tile.offset = tile.offset.Add(image.Point{0, 1})
}
if minusErrorValue.Y < errorValue.Y {
tile.offset = tile.offset.Add(image.Point{0, -1})
}
}
// TODO: Move images in a way that the majority of images is positioned equal to their original position
return nil
}
func (tp tilePairs) Stitch(tiles []imageTile, destImage *image.RGBA) error {
// Stitch takes a list of tiles and stitches them together.
// The destImage shouldn't be too large, or it gets too slow.
func Stitch(tiles []imageTile, destImage *image.RGBA) error {
intersectTiles := []*imageTile{}
images := []*image.RGBA{}
@ -225,19 +82,12 @@ func (tp tilePairs) Stitch(tiles []imageTile, destImage *image.RGBA) error {
}
imgCopy := *img
imgCopy.Rect = imgCopy.Rect.Add(tile.offset).Inset(4) // Reduce image bounds by 4 pixels on each side, because otherwise there will be artifacts.
images = append(images, &imgCopy)
images = append(images, &imgCopy) // TODO: Fix transparent pixels at the output image border because of Inset
}
}
//log.Printf("intersectTiles: %v", intersectTiles)
// Align those tiles
/*if err := tp.alignTiles(intersectTiles); err != nil {
return fmt.Errorf("Failed to align tiles: %w", err)
}*/
// TODO: Add working aligning algorithm
/*for _, intersectTile := range intersectTiles {
intersectTile.loadImage()
draw.Draw(destImage, destImage.Bounds(), intersectTile.image, destImage.Bounds().Min, draw.Over)
@ -254,7 +104,7 @@ func (tp tilePairs) Stitch(tiles []imageTile, destImage *image.RGBA) error {
// StitchGrid calls stitch, but divides the workload into a grid of chunks.
// Additionally it runs the workload multithreaded.
func (tp tilePairs) StitchGrid(tiles []imageTile, destImage *image.RGBA, gridSize int) (errResult error) {
func StitchGrid(tiles []imageTile, destImage *image.RGBA, gridSize int) (errResult error) {
//workloads := gridifyRectangle(destImage.Bounds(), gridSize)
workloads, err := hilbertifyRectangle(destImage.Bounds(), gridSize)
if err != nil {
@ -272,7 +122,7 @@ func (tp tilePairs) StitchGrid(tiles []imageTile, destImage *image.RGBA, gridSiz
go func() {
defer wg.Done()
for workload := range wc {
if err := tp.Stitch(tiles, destImage.SubImage(workload).(*image.RGBA)); err != nil {
if err := Stitch(tiles, destImage.SubImage(workload).(*image.RGBA)); err != nil {
errResult = err // This will not stop execution, but at least one of any errors is returned.
}
bar.Add(1)
@ -318,6 +168,7 @@ func drawMedianBlended(images []*image.RGBA, destImage *image.RGBA) {
// If there were no images to get data from, ignore the pixel.
if !found {
//destImage.SetRGBA(ix, iy, color.RGBA{})
continue
}

View File

@ -3,8 +3,6 @@
// This software is released under the MIT License.
// https://opensource.org/licenses/MIT
// TODO: Fix transparent pixels at the output image border
package main
import (
@ -159,8 +157,7 @@ func main() {
outputImage := image.NewRGBA(outputRect)
log.Printf("Stitching %v tiles into an image at %v", len(tiles), outputImage.Bounds())
tp := make(tilePairs)
if err := tp.StitchGrid(tiles, outputImage, 512); err != nil {
if err := StitchGrid(tiles, outputImage, 512); err != nil {
log.Panic(err)
}