Add cleanup mode to stitcher

This commit is contained in:
David Vogel 2019-11-30 18:28:17 +01:00
parent 6703074900
commit 1d832ebad1
4 changed files with 192 additions and 2 deletions

View File

@ -30,7 +30,8 @@ example list of files:
- Or run the program with parameters:
- `divide int`
A downscaling factor. 2 will produce an image with half the side lengths. (default 1)
- `input string`The source path of the image tiles to be stitched. (default "..\\..\\output")
- `input string`
The source path of the image tiles to be stitched. (default "..\\..\\output")
- `output string`
The path and filename of the resulting stitched image. (default "output.png")
- `xmax int`
@ -43,6 +44,8 @@ example list of files:
Upper bound of the output rectangle. This coordinate is included in the output.
- `prerender`
Pre renders the image in RAM before saving. Can speed things up if you have enough RAM.
- `cleanup float`
Enables cleanup mode with the given float as threshold. This will **DELETE** images from the input folder; no stitching will be done in this mode. A good value to start with is `0.999`, which deletes images where the sum of the min-max difference of each sub-pixel overlapping with other images is less than 99.9%% of the maximum possible sum of pixel differences.
To output the 100x100 area that is centered at the origin use:
@ -50,6 +53,12 @@ To output the 100x100 area that is centered at the origin use:
./stitch -divide 1 -xmin -50 -xmax 50 -ymin -50 -ymax 50
```
To remove images that would cause artifacts (You should recapture the deleted images afterwards):
``` Shell Session
./stitch -cleanup 0.999
```
To enter the parameters inside of the program:
``` Shell Session

View File

@ -26,6 +26,8 @@ type imageTile struct {
image image.Image // Either a rectangle or an RGBA image. The bounds of this image are determined by the filename.
imageMutex *sync.RWMutex //
imageUsedFlag bool // Flag signalling, that the image was used recently
pixelErrorSum uint64 // Sum of the difference between the (sub)pixels of all overlapping images. 0 Means that all overlapping images are identical.
}
func (it *imageTile) GetImage() (*image.RGBA, error) {

View File

@ -104,7 +104,7 @@ func Stitch(tiles []imageTile, destImage *image.RGBA) error {
return nil
}
// StitchGrid calls stitch, but divides the workload into a grid of chunks.
// StitchGrid calls Stitch, but divides the workload into a grid of chunks.
// Additionally it runs the workload multithreaded.
func StitchGrid(tiles []imageTile, destImage *image.RGBA, gridSize int, bar *pb.ProgressBar) (errResult error) {
//workloads := gridifyRectangle(destImage.Bounds(), gridSize)
@ -207,3 +207,124 @@ func drawMedianBlended(images []*image.RGBA, destImage *image.RGBA) {
}
}
}
// Compare takes a list of tiles and compares them pixel by pixel.
// The resulting pixel difference sum is stored in each tile.
func Compare(tiles []imageTile, bounds image.Rectangle) error {
intersectTiles := []*imageTile{}
images := []*image.RGBA{}
// Get only the tiles that intersect with the bounds.
// Ignore alignment here, doesn't matter if an image overlaps a few pixels anyways.
for i, tile := range tiles {
if tile.OffsetBounds().Overlaps(bounds) {
tilePtr := &tiles[i]
intersectTiles = append(intersectTiles, tilePtr)
img, err := tilePtr.GetImage()
if err != nil {
return fmt.Errorf("Couldn't get image: %w", err)
}
imgCopy := *img
imgCopy.Rect = imgCopy.Rect.Add(tile.offset).Inset(4) // Reduce image bounds by 4 pixels on each side, because otherwise there will be artifacts.
images = append(images, &imgCopy)
}
}
tempTilesEmpty := make([]*imageTile, 0, len(intersectTiles))
for iy := bounds.Min.Y; iy < bounds.Max.Y; iy++ {
for ix := bounds.Min.X; ix < bounds.Max.X; ix++ {
var rMin, rMax, gMin, gMax, bMin, bMax uint8
point := image.Point{ix, iy}
found := false
tempTiles := tempTilesEmpty
// Iterate through all images and find min and max subpixel values.
for i, img := range images {
if point.In(img.Bounds()) {
tempTiles = append(tempTiles, intersectTiles[i])
col := img.RGBAAt(point.X, point.Y)
if !found {
found = true
rMin, rMax, gMin, gMax, bMin, bMax = col.R, col.R, col.G, col.G, col.B, col.B
} else {
if rMin > col.R {
rMin = col.R
}
if rMax < col.R {
rMax = col.R
}
if gMin > col.G {
gMin = col.G
}
if gMax < col.G {
gMax = col.G
}
if bMin > col.B {
bMin = col.B
}
if bMax < col.B {
bMax = col.B
}
}
}
}
// If there were no images to get data from, ignore the pixel.
if !found {
continue
}
// Write the error value back into the tiles (Only those that contain the point point)
for _, tile := range tempTiles {
tile.pixelErrorSum += uint64(rMax-rMin) + uint64(gMax-gMin) + uint64(bMax-bMin)
}
}
}
return nil
}
// CompareGrid calls Compare, but divides the workload into a grid of chunks.
// Additionally it runs the workload multithreaded.
func CompareGrid(tiles []imageTile, bounds image.Rectangle, gridSize int, bar *pb.ProgressBar) (errResult error) {
//workloads := gridifyRectangle(destImage.Bounds(), gridSize)
workloads, err := hilbertifyRectangle(bounds, gridSize)
if err != nil {
return err
}
if bar != nil {
bar.SetTotal(int64(len(workloads))).Start()
}
// Start worker threads
wc := make(chan image.Rectangle)
wg := sync.WaitGroup{}
for i := 0; i < runtime.NumCPU()*2; i++ {
wg.Add(1)
go func() {
defer wg.Done()
for workload := range wc {
if err := Compare(tiles, workload); err != nil {
errResult = err // This will not stop execution, but at least one of any errors is returned.
}
if bar != nil {
bar.Increment()
}
}
}()
}
// Push workload to worker threads
for _, workload := range workloads {
wc <- workload
}
// Wait until all worker threads are done
close(wc)
wg.Wait()
return
}

View File

@ -28,6 +28,7 @@ var flagYMin = flag.Int("ymin", 0, "Upper bound of the output rectangle. This co
var flagXMax = flag.Int("xmax", 0, "Right bound of the output rectangle. This coordinate is not included in the output.")
var flagYMax = flag.Int("ymax", 0, "Lower bound of the output rectangle. This coordinate is not included in the output.")
var flagPrerender = flag.Bool("prerender", false, "Pre renders the image in RAM before saving. Can speed things up if you have enough RAM.")
var flagCleanupThreshold = flag.Float64("cleanup", 0, "Enable cleanup mode with the given threshold. This will DELETE images from the input folder, no stitching will be done in this mode. A good value to start with is 0.999, which deletes images where the sum of the min-max difference of each sub-pixel overlapping with other images is less than 99.9%% of the maximum possible sum of pixel differences.")
func main() {
flag.Parse()
@ -142,6 +143,63 @@ func main() {
outputRect = image.Rect(xMin, yMin, xMax, yMax)
}
// Query the user, if there were no cmd arguments given
/*if flag.NFlag() == 0 {
fmt.Println("\nYou can now define a cleanup threshold. This mode will DELETE input images based on their similarity with other overlapping input images. The range is from 0, where no images are deleted, to 1 where all images will be deleted. A good value to get rid of most artifacts is 0.999. If you enter a threshold above 0, the program will not stitch, but DELETE some of your input images. If you want to stitch, enter 0.")
prompt := promptui.Prompt{
Label: "Enter cleanup threshold:",
Default: strconv.FormatFloat(*flagCleanupThreshold, 'f', -1, 64),
AllowEdit: true,
Validate: func(s string) error {
result, err := strconv.ParseFloat(s, 64)
if err != nil {
return err
}
if result < 0 || result > 1 {
return fmt.Errorf("Number %v outside of valid range [0;1]", result)
}
return nil
},
}
result, err := prompt.Run()
if err != nil {
log.Panicf("Error while getting user input: %v", err)
}
*flagCleanupThreshold, err = strconv.ParseFloat(result, 64)
if err != nil {
log.Panicf("Error while parsing user input: %v", err)
}
}*/
if *flagCleanupThreshold < 0 || *flagCleanupThreshold > 1 {
log.Panicf("Cleanup threshold (%v) outside of valid range [0;1]", *flagCleanupThreshold)
}
if *flagCleanupThreshold > 0 {
bar := pb.Full.New(0)
log.Printf("Cleaning up %v tiles at %v", len(tiles), outputRect)
if err := CompareGrid(tiles, outputRect, 512, bar); err != nil {
log.Panic(err)
}
bar.Finish()
for _, tile := range tiles {
pixelErrorSumNormalized := float64(tile.pixelErrorSum) / float64(tile.Bounds().Size().X*tile.Bounds().Size().Y*3*255)
if 1-pixelErrorSumNormalized <= *flagCleanupThreshold {
os.Remove(tile.fileName)
log.Printf("Tile %v has matching factor of %f. Deleted file!", &tile, 1-pixelErrorSumNormalized)
} else {
log.Printf("Tile %v has matching factor of %f", &tile, 1-pixelErrorSumNormalized)
}
}
return
}
// Query the user, if there were no cmd arguments given
if flag.NFlag() == 0 {
prompt := promptui.Prompt{